
Prediction of Breakthrough Curves for 
Conservative and Reactive Transport
from the Structural Parameters of Highly Heterogeneous Media 

Scott K. Hansen1, Claus P. Haslauer2, Olaf A. Cirpka2 and Velimir V. Vesselinov1

1Computatonal Earth Science Group (EES-16), Los Alamos National Laboratory
2Center for Applied Geoscience, University of Tübingen

LA-UR-17-20067



Motivation
Classical macrodispersion theory derives large-scale 
dispersivity from structural parameters, but:
1. Limited to unrealistically small heterogeneities, 𝜎𝜎ln 𝐾𝐾2 ≪ 1
2. Asymptotic behavior only reached after 10-100 integral 

scales

CTRW models are suitable for modelling highly heterogeneous 
advection, are predictive when calibrated, but require ad hoc 
calibration.

Desirable to determine breakthrough curve shapes from 
structural parameters without limitation on distance.



Four key ideas
1. Mean arrival time of solute, 𝜇𝜇𝑡𝑡, determined by

𝜇𝜇𝑡𝑡 = 𝑥𝑥
𝑈𝑈,

where 𝑈𝑈 is mean velocity, 𝑥𝑥 is distance from injection location.

2. For 𝜎𝜎ln 𝐾𝐾2 < 4, plane breakthrough curves are well described by log-
normal distributions, which are defined by mean and variance. 

3. All else equal, increasing distance drives increasing BTC 
symmetry (consequence of central limit theorem).

4. All else equal, increasing heterogeneity drives increasing BTC 
asymmetry.



Basic approach
1. Generate multiple multi-

Gaussian subsurface 
realizations with different

𝜎𝜎ln 𝐾𝐾2 .

2. Perform particle tracking  to 
find flux-weighted BTCs at 
uniformly-spaced downgradient 
planes at

𝑋𝑋 = 𝑥𝑥
𝐼𝐼ln 𝐾𝐾

.

3. Perform regression to 
determine:

𝜎𝜎ln 𝑡𝑡2 (𝑋𝑋,𝜎𝜎ln 𝐾𝐾2 )

[Integral scale]

Schematic of single particle trajectory 
breaking through at successive planes.



𝐾𝐾-field box generated for each 
realization, imagined to fill space.

Periodic head BCs applied, with 
mean flow in 𝑥𝑥-direction.

Particles released from grid nodes 
on upgradient edge of the box.

Streamline tracking, with local-scale 
dispersion on each realization:
• 200 release points
• 40 particles per point
• 100 planes at which BT recorded

Particle tracking Black circles 
represent release 
locations

Schematic of 
upgradient face.



Regression to predict breakthrough curves
Polynomial regression yields 𝜎𝜎ln 𝑡𝑡2 , 
and we know 𝜇𝜇𝑡𝑡. For log-normal 
distribution,

𝜇𝜇ln 𝑡𝑡 = ln𝜇𝜇ln 𝑡𝑡 + 𝜎𝜎ln 𝑡𝑡
2

2 .

Thus, we arrive at BTC expression

𝑈𝑈𝑐𝑐𝑓𝑓 𝑋𝑋,𝑇𝑇 = 𝑈𝑈
𝐼𝐼ln 𝐾𝐾

1

𝑇𝑇 2𝜋𝜋𝜎𝜎ln 𝑡𝑡
2
𝑒𝑒
−
ln 𝑋𝑋−ln 𝑇𝑇+12𝜎𝜎ln 𝑡𝑡

2
2

2𝜎𝜎ln 𝑡𝑡
2 ,

where 𝑇𝑇 ≡ 𝑡𝑡𝑡𝑡
𝐼𝐼ln 𝐾𝐾

.

3D scatter plot of 𝜎𝜎ln 𝑡𝑡2 as function of 
𝜎𝜎ln 𝐾𝐾2 and 𝑋𝑋, with regression surface 

superimposed.



Robustness of regression
Monte Carlo approach allows 
assessment of regression 
reliability.

Two major concerns:

• How informative is ensemble-
based regression about a 
single realization?

• Within a realization, how 
similar are point-release BTCs 
to their flux-weighted 
average?

3D scatter plot of 𝜎𝜎ln 𝑡𝑡2 as function of 
𝜎𝜎ln 𝐾𝐾2 and 𝑋𝑋, with regression surface 

superimposed.



Predictive reliability

𝑋𝑋 = 430

𝑋𝑋 = 4.3

𝜎𝜎ln 𝐾𝐾2 = 1 𝜎𝜎ln 𝐾𝐾2 = 3.5

Each axes shows a 
comparison of ten 
flux-weighted BTCs 
with corresponding 
regression prediction



Predictive reliability
All realizations are equally likely.

For regression to be predictive, the 
flux-weighted breakthrough of any 
realization must be “close enough” 
to the regression prediction.

Flux-weighted CDF of each 
realization (𝐹𝐹𝑖𝑖 ) compared with 
regression CDF (𝐹𝐹reg) using log-
time of 95% breakthrough is a 
metric for this:

Ω ≡ 1
𝑁𝑁 ∑𝑖𝑖=1

𝑁𝑁 𝐹𝐹reg 𝑋𝑋,.95 −𝐹𝐹𝑖𝑖 𝑋𝑋,.95 2
Heat map of Ω as function of 𝜎𝜎ln 𝐾𝐾2 and 

𝑋𝑋. 



Point BTC coherence

𝑋𝑋 = 430

𝑋𝑋 = 4.3

𝜎𝜎ln 𝐾𝐾2 = 1 𝜎𝜎ln 𝐾𝐾2 = 3.5

Each column is from 
a single realization



Point BTC coherence
Variance of 95 % breakthrough 
among point BTCs for each of the 
200 release locations within a 
realization is a proxy for BTC 
coherence.

Average of this quantity, over all 
realizations with identical 𝝈𝝈𝒍𝒍𝒍𝒍 𝑲𝑲𝟐𝟐 , 
is a measure of incoherence.

Coherence is necessary condition 
for regression to be predictive.

Heat map of variance of 95% point 
breakthrough as function of 𝜎𝜎ln 𝐾𝐾2 and 𝑋𝑋. 



Implied 𝐷𝐷∞
We can show that if the solute breakthrough curve at a plane is 
inverse Gaussian, then:

𝐷𝐷∞ =
𝜎𝜎𝑡𝑡2𝑥𝑥2

2𝜇𝜇𝑡𝑡3

This alternative approach does not require sequential calculation 
of whole-plume moments.

Once this quantity stabilizes, we have entered the 
macrodispersion regime. We obtain
• Number of integral scales to macrodispersive limit
• 𝐷𝐷∞ as function of 𝜎𝜎ln 𝐾𝐾2 .



Implied 𝐷𝐷∞

Heat map of 𝐥𝐥𝐥𝐥𝐷𝐷∞ as function of 𝜎𝜎ln 𝐾𝐾2 and 
𝑋𝑋. 

Asymptotic 𝐷𝐷∞ from simulation, compared 
with classical, asymptotic approximation 

and another recent numerical study. 



Key points
1. Approached the problem of linking breakthrough curve 

shape (RP-CTRW transition distribution) to structural 
parameters from a Monte Carlo approach

2. Monte Carlo analysis allowed empirical error analysis:
1. Within a realization (point breakthrough curves)
2. Between realizations

3. BTCs also imply a late-time macrodispersion coefficient.
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